We have identified 227 new spectroscopic white-dwarf + main-sequence (WDMS) binaries from the ninth data release (DR9) of the Sloan Digital Sky Survey (SDSS). The SDSS spectra of the newly found WDMS binaries with a DA white dwarf and an M-dwarf are analysed based on a spectral decomposition/fitting method. We obtain the effective temperatures, surface gravities and masses of the white dwarf, together with the spectral types and metallicities of the secondary star. Two independent distance estimates are derived from the flux-scaling factors between the WDMS SDSS spectra and the white dwarf and M-dwarf model spectra. We find that about 25 per cent of the newly found WDMS binaries show a significant discrepancy between the two distance estimates. This might be caused by the effects of M-dwarf stellar activity or irradiation of the M-dwarf companions by the white dwarf. The stellar parameter distributions are used to investigate the global properties of the newly found WDMS binaries. We find that the WDMS binaries with a low signal-to-noise ratio (S/N<=4.0) usually have a massive DA white dwarf component with a higher surface gravity, and the metallicity is usually significantly different from solar. This suggests that the observational selection effects and the spectral S/N of the WDMS binaries have a significant influence on the determinations of these physical parameters of WDMS binaries.
Cone search capability for table J/MNRAS/445/1331/catalog (Catalog of 227 WDMS binaries identified in SDSS DR9)