Database of scalable training of neural network potentials for complex interfaces through data augmentation

DOI

This database contains the reference data used for direct force training of Artificial Neural Network (ANN) interatomic potentials using the atomic energy network (ænet) and ænet-PyTorch packages (https://github.com/atomisticnet/aenet-PyTorch). It also includes the GPR-augmented data used for indirect force training via Gaussian Process Regression (GPR) surrogate models using the ænet-GPR package (https://github.com/atomisticnet/aenet-gpr). Each data file contains atomic structures, energies, and atomic forces in XCrySDen Structure Format (XSF). The dataset includes all reference training/test data and corresponding GPR-augmented data used in the four benchmark examples presented in the reference paper, "Scalable Training of Neural Network Potentials for Complex Interfaces Through Data Augmentation". A hierarchy of the dataset is described in the README.txt file, and an overview of the dataset is also summarized in supplementary Table S1 of the reference paper.

Identifier
DOI https://doi.org/10.24435/materialscloud:w6-9a
Related Identifier https://doi.org/10.48550/arXiv.2412.05773
Related Identifier https://doi.org/10.1038/s41524-025-01651-0
Related Identifier https://github.com/atomisticnet/aenet-gpr
Related Identifier https://archive.materialscloud.org/communities/mcarchive
Related Identifier https://doi.org/10.24435/materialscloud:pe-yr
Metadata Access https://archive.materialscloud.org/oai2d?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2619
Provenance
Creator Yeu, In Won; Stuke, Annika; Urban, Alexander; Artrith, Nongnuch
Publisher Materials Cloud
Contributor Yeu, In Won; Stuke, Annika; Urban, Alexander; Artrith, Nongnuch
Publication Year 2025
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type info:eu-repo/semantics/other
Format text/markdown; text/plain; application/x-bzip2
Discipline Materials Science and Engineering