Acidification alters predator-prey interactions of blue crab Callinectes sapidus and soft-shell clam Mya arenaria, supplement to: Glaspie, Cassandra N; Longmire, Katherine; Seitz, Rochelle D (2017): Acidification alters predator-prey interactions of blue crab Callinectes sapidus and soft-shell clam Mya arenaria. Journal of Experimental Marine Biology and Ecology, 489, 58-65

DOI

Acidification due to anthropogenic CO2 pollution, along with episodic or persistent acidification that occurs in coastal environments, will likely result in severe seasonal acidification in estuarine environments. Acidification decreases the fitness of individual species, but the degree to which predator-prey interactions will be impacted is largely unknown. This mesocosm study examined the effect of CO2 acidification on crab-bivalve predator-prey interactions involving two commercially important Chesapeake Bay species, the blue crab Callinectes sapidus and the soft-shell clam Mya arenaria. In particular, the direct effects of CO2 acidification on clam growth and behavior, and the indirect effects of CO2 acidification on interactions between crabs and clams were examined. Mya arenaria were grown in CO2-acidified water (pH 7.2) or ambient conditions (pH 7.8) for 30 days. To determine the effect of acidification on clam responsiveness to mechanical disturbance, a probe was slowly moved towards clams until they ceased pumping (a behavior to avoid detection by predators), and the distance between the probe and the clam's siphon was noted. Clams were exposed to predation by C. sapidus, which were held under acidified or ambient conditions for 48 h. Callinectes sapidus handling time, search time, and encounter rate were measured from video. Acidified clams had lighter shells than ambient clams, indicating that shell dissolution occurred. Acidification reduced the responsiveness of M. arenaria to a mechanical disturbance that simulated an approaching predator. As compared to ambient trials, crabs in acidified trials had higher encounter rates; however, this was offset by crabs taking longer to find the first clam in trials, and by increased occurrence of crabs eating only a portion of the prey available. As a result, there was no net change in predation-related clam mortality in acidified trials as compared to ambient conditions. Understanding how acidification will impact food webs in productive estuarine environments requires an examination of the direct impacts of acidification on organism behavior and physiology, as well as indirect effects of acidification mediated through predator-prey interactions.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2017-03-16.

Identifier
DOI https://doi.org/10.1594/PANGAEA.873555
Related Identifier https://doi.org/10.1016/j.jembe.2016.11.010
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.873555
Provenance
Creator Glaspie, Cassandra N; Longmire, Katherine; Seitz, Rochelle D
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2017
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 4954 data points
Discipline Earth System Research
Spatial Coverage (-76.558 LON, 37.269 LAT)
Temporal Coverage Begin 2015-06-13T00:00:00Z
Temporal Coverage End 2015-07-13T00:00:00Z