Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification

DOI

Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-05-15.

Supplement to: Lohbeck, Kai T; Riebesell, Ulf; Reusch, Thorsten B H (2014): Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Proceedings of the Royal Society B-Biological Sciences, 281(1786), 20140003-20140003

Identifier
DOI https://doi.org/10.1594/PANGAEA.832536
Related Identifier https://doi.org/10.1098/rspb.2014.0003
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.832536
Provenance
Creator Lohbeck, Kai T; Riebesell, Ulf (ORCID: 0000-0002-9442-452X); Reusch, Thorsten B H ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2014
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 15400 data points
Discipline Earth System Research