Flux data of NU2_trap (Table A1)

DOI

Flux of bulk components, carbonate- and silicate-bearing skeleton organisms, and the d15N-isotopic signal were investigated on a 1-year time-series sediment trap deployed at the pelagic NU mooring site (Namibia Upwelling, ca. 29°S, 13°E) in the central Benguela System. The flux of bulk components mostly shows bimodal seasonality with major peaks in austral summer and winter, and moderate to low export in austral fall and spring. The calcium carbonate fraction dominates the export of particulates throughout the year, followed by lithogenic and biogenic opal. Planktonic foraminifera and coccolithophorids are major components of the carbonate fraction, while diatoms clearly dominate the biogenic opal fraction. Bulk d15N isotopic composition of particulate matter is positively correlated with the total mass flux during summer and fall, while negatively correlated during winter and spring. Seasonal changes in the intensity of the main oceanographic processes affecting the NU site are inferred from variations in bulk component flux, and in the flux and diversity patterns of individual species or group of species. Influence from the Namaqua (Hondeklip) upwelling cell through offshore migration of chlorophyll filaments is stronger in summer, while the winter flux maximum seems to reflect mainly in situ production, with less influence from the coastal and shelf upwelling areas. On a yearly basis, dominant microorganisms correspond well with the flora and fauna of tropical/subtropical waters, with minor contribution of near-shore organisms. The simultaneous occurrence of species with different ecological affinities mirrors the fact that the mooring site was located in a transitional region with large hydrographic variability over short-time intervals.

Supplement to: Romero, Oscar E; Boeckel, Babette; Donner, Barbara; Lavik, Gaute; Fischer, Gerhard; Wefer, Gerold (2002): Seasonal productivity dynamics in the pelagic central Benguela System inferred from the flux of carbonate and silicate organisms. Journal of Marine Systems, 37(4), 259-278

Identifier
DOI https://doi.org/10.1594/PANGAEA.115823
Related Identifier https://doi.org/10.1016/S0924-7963(02)00189-6
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.115823
Provenance
Creator Romero, Oscar E ORCID logo; Boeckel, Babette; Donner, Barbara; Lavik, Gaute; Fischer, Gerhard ORCID logo; Wefer, Gerold ORCID logo
Publisher PANGAEA
Publication Year 2002
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 1100 data points
Discipline Earth System Research
Spatial Coverage (13.117 LON, -29.200 LAT); Namibia upwelling, Southeast Atlantic
Temporal Coverage Begin 1992-01-20T12:00:00Z
Temporal Coverage End 1993-01-15T12:00:00Z