In sea urchins, spermatozoa are stored in the gonads in hypercapnic conditions (pH8.0, and there is an alkalinization of the sperm's internal pH (pHi) through the release of CO2 and H+. Previous research has shown that when pHi is above 7.2-7.3, the dynein ATPase flagellar motors are activated, and the sperm become motile. It has been hypothesised that ocean acidification (OA), which decreases the pH of seawater, may have a narcotic effect on sea urchin sperm by impairing the ability to regulate pHi, resulting in decreased motility and swimming speed. Here we use data collected from the same individuals to test the relationship between pHi and sperm motility/performance in the New Zealand sea urchin Evechinus chloroticus (Valenciennes) under near- (2100) and far-future (2150) atmospheric pCO2 conditions (RCP 8.5: pH 7.77, 7.51). Decreasing seawater pH significantly negatively impacted the proportion of motile sperm), and four of the six computer-assisted sperm analysis (CASA) sperm performance measures. In control conditions, sperm had an activated pHi of 7.52. E. chloroticus sperm could not defend pHi. in future OA conditions; there was a stepped decrease in the pHi at pH 7.77, with no significant difference in mean pHi between pH 7.77 and 7.51. Paired measurements in the same males showed a positive relationship between pHi and sperm motility, but with a significant difference in the response between males. Differences in motility and sperm performance in OA conditions may impact fertilization success in a future ocean.
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-12-15.