Seawater carbonate chemistry and food chain transfer of Polonium between primary producers and consumers

DOI

Phytoplankton and zooplankton are key marine components that play an important role in metal distribution through a food web transfer. An increased phytoplankton concentration as a result of ocean acidification and warming are well-established, along with the fact that phytoplankton biomagnify 210Po by 3–4 orders of magnitude compared to the seawater concentration. This experimental study is carried out to better understand the transfer of polonium between primary producers and consumers. The experimental produced data highlight the complex interaction between the polonium concentration in zooplankton food, i.e. phytoplankton, its excretion via defecated fecal pellets, and its bioaccumulation at ambient seawater pH and a lower pH of 7.7, typical of ocean acidification scenarios in the open ocean. The mass of copepods recovered was 11% less: 7.7 pH compared to 8.2. The effects of copepod species (n = 3), microalgae species (n = 3), pH (n = 2), and time (n = 4) on the polonium activity in the fecal pellets (expressed as % of the total activity introduced through feeding) was tested using an ANOVA 4. With the exception of time (model: F20, 215 = 176.84, p < 0.001; time: F3 = 1.76, p = 0.16), all tested parameters had an impact on the polonium activity (copepod species: F2 = 169.15, p < 0.0001; algae species: F2 = 10.21, p < 0.0001; pH: F1 = 9.85, p = 0.002) with complex interactions (copepod x algae: F2 = 19.48, p < 0.0001; copepod x pH: F2 = 10.54, p < 0.0001; algae x pH: F2 = 4.87, p = 0.009). The experimental data underpin the hypothesis that metal bioavailability and bioaccumulation will be enhanced in secondary consumers such as crustacean zooplankton due to ocean acidification.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-06-15.

Identifier
DOI https://doi.org/10.1594/PANGAEA.959783
Related Identifier https://doi.org/10.3390/toxics11010014
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.959783
Provenance
Creator Behbehani, Montaha; Uddin, Saif ORCID logo; Dupont, Sam; Fowler, Scott W; Gorgun, Aysun U; Al-Enezi, Yousef; Al-Musallam, Lamya; Kumar, Vanitha V; Faizuddin, Mohammad
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2023
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 3798 data points
Discipline Earth System Research