Seawater carbonate chemistry and calcification rate of cold-water coral Lophelia pertusa during experiments, 2011

DOI

Ocean acidity has increased by 30% since preindustrial times due to the uptake of anthropogenic CO2 and is projected to rise by another 120% before 2100 if CO2 emissions continue at current rates. Ocean acidification is expected to have wide-ranging impacts on marine life, including reduced growth and net erosion of coral reefs. Our present understanding of the impacts of ocean acidification on marine life, however, relies heavily on results from short-term CO2 perturbation studies. Here we present results from the first long-term CO2 perturbation study on the dominant reef-building cold-water coral Lophelia pertusa and relate them to results from a short-term study to compare the effect of exposure time on the coral's responses. Short-term (one week) high CO2 exposure resulted in a decline of calcification by 26-29% for a pH decrease of 0.1 units and net dissolution of calcium carbonate. In contrast, L. pertusa was capable to acclimate to acidified conditions in long-term (six months) incubations, leading to even slightly enhanced rates of calcification. Net growth is sustained even in waters sub-saturated with respect to aragonite. Acclimation to seawater acidification did not cause a measurable increase in metabolic rates. This is the first evidence of successful acclimation in a coral species to ocean acidification, emphasizing the general need for long-term incubations in ocean acidification research. To conclude on the sensitivity of cold-water coral reefs to future ocean acidification further ecophysiological studies are necessary which should also encompass the role of food availability and rising temperatures.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).

Supplement to: Form, Armin; Riebesell, Ulf (2011): Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Global Change Biology, 18(3), 843-853

Identifier
DOI https://doi.org/10.1594/PANGAEA.778439
Related Identifier IsSupplementTo https://doi.org/10.1111/j.1365-2486.2011.02583.x
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.778439
Provenance
Creator Form, Armin; Riebesell, Ulf (ORCID: 0000-0002-9442-452X)
Publisher PANGAEA
Contributor Nisumaa, Anne-Marin
Publication Year 2012
Funding Reference Seventh Framework Programme https://doi.org/10.13039/100011102 Crossref Funder ID 211384 https://cordis.europa.eu/project/id/211384 European Project on Ocean Acidification; Sixth Framework Programme https://doi.org/10.13039/100011103 Crossref Funder ID 511106 https://cordis.europa.eu/project/id/511106 European network of excellence for Ocean Ecosystems Analysis
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 787 data points
Discipline Earth System Research