Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea

DOI

Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1-4 °C and pH to decrease by 0.1-0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2=424-426, 888-940 ppm-v) and warming (T=28, 32 °C) on calcification rate and skeletal morphology of the abundant and widespread Caribbean reef-building scleractinian coral Siderastrea siderea. Hierarchical linear mixed-effects modelling reveals that coral calcification rate was negatively impacted by both warming and acidification, with their combined effects yielding the most deleterious impact. Negative effects of warming (32 °C/424 ppm-v) and high-temperature acidification (32 °C/940 ppm-v) on calcification rate were apparent across both 30-day intervals of the experiment, while effects of low-temperature acidification (28 °C/888 ppm-v) were not apparent until the second 30-day interval-indicating delayed onset of acidification effects at lower temperatures. Notably, two measures of coral skeletal morphology-corallite height and corallite infilling-were negatively impacted by next-century acidification, but not by next-century warming. Therefore, while next-century ocean acidification and warming will reduce the rate at which corals build their skeletons, next-century acidification will also modify the morphology and, potentially, function of coral skeletons.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-10-31.

Supplement to: Horvath, Kimmaree M; Castillo, Karl D; Armstrong, Pualani; Westfield, Isaac T; Courtney, T; Ries, Justin B (2016): Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea. Scientific Reports, 6, 29613

Identifier
DOI https://doi.org/10.1594/PANGAEA.867480
Related Identifier https://doi.org/10.1038/srep29613
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.867480
Provenance
Creator Horvath, Kimmaree M; Castillo, Karl D; Armstrong, Pualani; Westfield, Isaac T; Courtney, T ORCID logo; Ries, Justin B (ORCID: 0000-0001-8427-206X)
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 7757 data points
Discipline Earth System Research
Spatial Coverage (-88.270 LON, 16.110 LAT)
Temporal Coverage Begin 2011-06-01T00:00:00Z
Temporal Coverage End 2011-06-30T00:00:00Z