(Table 1) Geochemistry of sector-zoned crystal at DSDP Hole 45-395A

DOI

Variations in crystal morphologies in pillow basalts and probable sheet flows sampled from the region of the East Pacific Rise drilled during Leg 54 are related both to differences in composition and to an extreme range of cooling rate experienced upon extrusion. The basalts range in composition from olivine-rich tholeiites to tholeiitic ferrobasalts, and include some more alkaline basalts. The kinetics of crystal growth in some samples appears to have been influenced by the amount of initial superheating (or supercooling) of the magma, or possibly by differential retention of volatiles. Olivine in quartznormative ferrobasalts apparently formed metastably at high undercooling. Despite these effects, reliable petrographic criteria are established to distinguish the principal rock types described regardless of the crystallinity and grain size. Microphenocrysts formed prior to pillow formation correspond closely to mineral assemblages inferred from normative plots and variation diagrams to control crystal fractionation at various stages. The details of spherulitic and dendritic growth also provide some clues about composition. Petrographic evidence for magma mixing is scant. Only some Siqueiros fracture zone basalts contain zoned plagioclase phenocrysts with glass inclusions similar to those used to infer mixing among Mid-Atlantic Ridge basalts. All basalts from the summit and flanks of the East Pacific Rise are aphyric. One possible petrographic consequence of mixing between olivine tholeiites and ferrobasalts - formation of clinopyroxene phenocrysts - is not evident in any fracture zone or Rise crest basalt. Highly evolved ferrobasalts with liquidus low-Ca clinopyroxene have not been sampled, nor does textural evidence indicate that any basalts sampled are hybrid compositions between such magmas and less fractionated compositions. Evidently the sampled ferrobasalts are close to the most evolved compositions that occur in any abundance on this portion of the East Pacific Rise.

Analyses made on the Edinburgh University Mark V electron microprobe. Contribution by Colin H. Donaldson.

Supplement to: Natland, James H (1980): Crystal morphologies in basalts dredged and drilled from the East Pacific Rise near 9°N and the Siqueiros fracture zone. In: Rosendahl, BR; Hekinian, R; et al. (eds.), Initial Reports of the Deep Sea Drilling Project (U.S. Govt. Printing Office), 54, 605-633

Identifier
DOI https://doi.org/10.1594/PANGAEA.823510
Related Identifier https://doi.org/10.2973/dsdp.proc.54.124.1980
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.823510
Provenance
Creator Natland, James H
Publisher PANGAEA
Publication Year 1980
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 66 data points
Discipline Earth System Research
Spatial Coverage (-46.082 LON, 22.756 LAT)