Seawater carbonate chemistry and phytoplankton biomass and species composition of a unique temperate rocky coastal hydrothermal vent system

DOI

In situ effects of ocean acidification are increasingly studied at submarine CO2 vents. Here we present a preliminary investigation into the water chemistry and biology of cool temperate CO2 vents near Whakaari–White Island, New Zealand. Water samples were collected inside three vent shafts, within vents at a distance of 2 m from the shaft and at control sites. Vent samples contained both seawater pH on the total scale (pHT) and carbonate saturation states that were severely reduced, creating conditions as predicted for beyond the year 2100. Vent samples showed lower salinities, higher temperatures and greater nutrient concentrations. Sulfide levels were elevated and mercury levels were at concentrations considered toxic at all vent and control sites, but stable organic and inorganic ligands were present, as deduced from Cu speciation data, potentially mediating harmful effects on local organisms. The biological investigations focused on phytoplankton, zooplankton and macroalgae. Interestingly, we found lower abundances but higher diversity of phytoplankton and zooplankton at sites in the direct vicinity of Whakaari. Follow-up studies will need a combination of methods and approaches to attribute observations to specific drivers. The Whakaari vents represent a unique ecosystem with considerable biogeochemical complexity, which, like many other vent systems globally, require care in their use as a model of 'future oceans'.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-05-6.

Identifier
DOI https://doi.org/10.1594/PANGAEA.917470
Related Identifier IsSupplementTo https://doi.org/10.1071/MF19167
Related Identifier IsDocumentedBy https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.917470
Provenance
Creator Zitoun, Rebecca ORCID logo; Connell, Sean D ORCID logo; Cornwall, Christopher Edward ORCID logo; Currie, Kim I; Fabricius, Katharina Elisabeth ORCID logo; Hoffmann, L J ORCID logo; Lamare, Miles D; Murdoch, J; Noonan, Sam ORCID logo; Sander, Sylvia G ORCID logo; Sewell, M A ORCID logo; Shears, N T; van den Berg, Constant M G ORCID logo; Smith, Abigail M
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2019
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 241 data points
Discipline Earth System Research
Spatial Coverage (177.181 LON, -37.520 LAT)