UV spectra of classical T Tauri stars

DOI

The far-ultraviolet (FUV; 912-1700 {AA}) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r<10 AU), from a gas- and dust-rich primordial disk to a transitional system where the optically thick warm dust distribution has been depleted. Previous efforts to measure the true stellar+accretion-generated FUV luminosity (both hot gas emission lines and continua) have been complicated by a combination of low-sensitivity and/or low-spectral resolution and did not include the contribution from the bright Ly{alpha} emission line. In this work, we present a high-resolution spectroscopic study of the FUV radiation fields of 16 T Tauri stars whose dust disks display a range of evolutionary states. We include reconstructed Ly{alpha} line profiles and remove atomic and molecular disk emission (from H_2_ and CO fluorescence) to provide robust measurements of both the FUV continuum and hot gas lines (e.g., Ly{alpha}, N V, C IV, He II) for an appreciable sample of T Tauri stars for the first time. We find that the flux of the typical classical T Tauri star FUV radiation field at 1 AU from the central star is ~10^7^ times the average interstellar radiation field. The Ly{alpha} emission line contributes an average of 88% of the total FUV flux, with the FUV continuum accounting for an average of 8%. Both the FUV continuum and Ly{alpha} flux are strongly correlated with C IV flux, suggesting that accretion processes dominate the production of both of these components. On average, only ~0.5% of the total FUV flux is emitted between the Lyman limit (912 {AA}) and the H_2_(0-0) absorption band at 1110 {AA}. The total and component-level high-resolution radiation fields are made publicly available in machine-readable format.

Cone search capability for table J/ApJ/784/127/list (List of individual spectra)

Identifier
DOI http://doi.org/10.26093/cds/vizier.17840127
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/ApJ/784/127
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/784/127
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/784/127
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/ApJ/784/127
Provenance
Creator France K.; Schindhelm E.; Bergin E.A.; Roueff E.; Abgrall H.
Publisher CDS
Publication Year 2017
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Interdisciplinary Astronomy; Natural Sciences; Observational Astronomy; Physics; Stellar Astronomy