Pore water data of laboratory incubation experiments on natural benthic weathering in organic rich Baltic Sea sediments

DOI

Enhanced mineral dissolution in the benthic environment is currently discussed as a potential technique for ocean alkalinity enhancement (OAE) to reduce atmospheric CO2 levels. This study explores how biogeochemical processes affect the dissolution of alkaline minerals in surface sediments during laboratory incubation experiments. These involved introducing dunite and calcite to organic-rich sediments from the Baltic Sea under controlled conditions in an oxic environment. The sediment cores were incubated with Baltic Sea bottom water. Eight sediment cores were placed in a rack in an upright position. The bottom water was carefully removed via suction and replaced with a known volume (1.5 l – 2.0 l) of filtered (0.2 µm) Baltic Sea bottom water in order to remove pelagic auto- and heterotrophs and suspended particles. The volume of water added depended on the height of sediment in each core which varied slightly due to the recovery method. After this procedure, a gaseous headspace of ca. 10 cm was left in each core. Furthermore, the cores were equipped with adjustable stirring heads that contained ports for inserting optodes to continuously record pH and O2 concentrations in the overlying water. In order to prevent anoxic conditions developing, ambient air was bubbled into the water column. The water column in each core was slowly and continuously flushed with a constant throughflow of 40 µl min-1 from a single reservoir of bottom water. The residence time of the water inside the cores was thus about 4 to 5 weeks. Bottom water samples were taken from the outflow of each core over a time period of several hours. Thus, samples represent the average outflow over the respective time period. Sampling intervals increased from daily during the first two weeks to every three to four days and weekly towards the end of the experiment. All samples were filtered through a 0.2 µm cellulose membrane filter and refrigerated in 25 ml ZinsserTM scintillation vials. A 5 ml aliquot was frozen directly after the sampling procedure for later nutrient analysis. Nutrient measurements were performed either via manual photometric measurement (NH4) or using a Seal – AnalyticalTM QuAAtro autoanalyzer (PO43-, NO2-, NO3-). Samples for TA were analyzed directly after sampling by titration of 1 ml of bottom/pore water with 0.02N HCl. Titration was ended when a stable purple color appeared. During titration, the sample was degassed by continuous bubbling with nitrogen to remove any generated CO2 and H2S. The acid was standardized using an IAPSO seawater standard. Anion element concentrations (SO42-, Cl-, Br-) were determined using ion chromatography (IC, METROHM 761 Compact, conductivity mode). Acidified sub-samples (30 μl suprapure HNO3- + 3 ml sample) were prepared for analyses of major and trace elements (Si, Na, K, Li, B, Mg, Ca, Sr, Mn, Ni and Fe) by inductively coupled plasma optical emission spectroscopy (ICP-OES, Varian 720-ES). At the end of the experiments, the bottom water was removed via suction and the cores were sliced for pore water analysis. The pore waters were recovered by centrifuging each respective sediment layer in 50 ml falcon tubes at 3000 rpm for 10 minutes. Afterwards, the supernatant water was transferred to polyethylene (PE) vials in an Ar-filled glove bag to minimize contact with oxygen. In addition to the parameters listed above, pore waters were analyzed for H2S and Fe2+. For the analysis of dissolved Fe2+ concentrations, sub-samples of 1 ml were taken within the glove bag, immediately stabilized with ascorbic acid and analyzed within 30 minutes after complexation with 20 μl of Ferrozin. For H2S, an aliquot of pore water was diluted with appropriate amounts of oxygen-free artificial seawater and the H2S was fixed by immediate addition of zinc acetate gelatin solution.

Identifier
DOI https://doi.pangaea.de/10.1594/PANGAEA.974077
Related Identifier IsPartOf https://doi.pangaea.de/10.1594/PANGAEA.974076
Related Identifier IsSupplementTo https://doi.org/10.3389/fclim.2023.1245580
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.974077
Provenance
Creator Fuhr, Michael ORCID logo; Wallmann, Klaus (ORCID: 0000-0002-1795-376X); Dale, Andy W; Diercks, Isabel ORCID logo; Kalapurakkal, Habeeb Thanveer; Schmidt, Mark ORCID logo; Sommer, Stefan; Böhnke-Brandt, Stefanie ORCID logo; Perner, Mirjam ORCID logo; Geilert, Sonja ORCID logo
Publisher PANGAEA
Publication Year 2024
Funding Reference Federal Ministry of Education and Research https://doi.org/10.13039/501100002347 Crossref Funder ID 03F0895A https://foerderportal.bund.de/foekat/jsp/SucheAction.do?actionMode=view&fkz=03F0895A DAM CDRmare - RETAKE, GEOMAR
Rights Creative Commons Attribution 4.0 International; Data access is restricted (moratorium, sensitive data, license constraints); https://creativecommons.org/licenses/by/4.0/
OpenAccess false
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 1675 data points
Discipline Earth System Research
Spatial Coverage (10.042 LON, 54.517 LAT); Boknis Eck