VAR FORECASTING USING BAYESIAN VARIABLE SELECTION (replication data)

DOI

This paper develops methods for automatic selection of variables in Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic linear and nonlinear models, as well as models of large dimensions. The performance of the proposed variable selection method is assessed in forecasting three major macroeconomic time series of the UK economy. Data-based restrictions of VAR coefficients can help improve upon their unrestricted counterparts in forecasting, and in many cases they compare favorably to shrinkage estimators.

Identifier
DOI https://doi.org/10.15456/jae.2022320.0731085360
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:775731
Provenance
Creator Korobilis, Dimitris
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2013
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics; Social and Behavioural Sciences