CatCrops_identification: A Python Project for Early Crop Type Classification Using Remote Sensing and Ancillary Data

DOI

CatCrops_identification is a Python library developed for the early classification of crop types using remote sensing data (Sentinel-2) and ancillary information. It is based on a Transformer model adapted for the analysis of spectral time series with variable length, and it allows the integration of auxiliary data such as the previous year’s crop, irrigation system, cloud cover, elevation, and other geographic features.

The library provides tools to download and prepare datasets, train deep learning models, and generate vector maps with plot-level classification. CatCrops_identification includes scripts to automate the entire workflow and offers a public dataset that combines declared and inspected information on crop types in the Lleida region.

This approach improves classification accuracy in the early stages of the agricultural season, offering a robust and efficient tool for agricultural planning and water resource management.

Python, 3.8.18

Identifier
DOI https://doi.org/10.34810/data2322
Metadata Access https://dataverse.csuc.cat/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.34810/data2322
Provenance
Creator Gené-Mola, Jordi ORCID logo; Pàmies Sans, Magí ORCID logo; Minuesa, César ORCID logo; Casadesus, Jaume ORCID logo; Bellvert, Joaquim ORCID logo
Publisher CORA.Repositori de Dades de Recerca
Contributor Gené-Mola, Jordi; Pamies-Sans, Magí; Institut de Recerca i Tecnologia Agroalimentàries
Publication Year 2025
Funding Reference European Commission 101084201 ; Agència per la Competitivitat de l’Empresa (ACCIÓ) ACE100/23/000050 ; Agencia Estatal de Investigació TED2021-131237B-C21
Rights Custom Dataset Terms; info:eu-repo/semantics/openAccess; https://dataverse.csuc.cat/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.34810/data2322
OpenAccess true
Contact Gené-Mola, Jordi (Institut de Recerca i Tecnologia Agroalimentàries (IRTA)); Pamies-Sans, Magí (Institut de Recerca i Tecnologia Agroalimentàries (IRTA))
Representation
Resource Type Program source code; Dataset
Format application/zip; text/plain
Size 1258857; 21471
Version 1.0
Discipline Agricultural Sciences; Agriculture, Forestry, Horticulture, Aquaculture; Agriculture, Forestry, Horticulture, Aquaculture and Veterinary Medicine; Life Sciences