Plankton community structure during KOSMOS 2011 mesocosm experiment in the Raunefjord

DOI

About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80–400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2–2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph‐dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of ~1500 cells/mL accelerate sinking by about 35–40%, which we estimate (by one‐dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.

Supplement to: Bach, Lennart Thomas; Boxhammer, Tim; Larsen, Aud; Hildebrandt, Nicole; Schulz, Kai Georg; Riebesell, Ulf (2016): Influence of plankton community structure on the sinking velocity of marine aggregates. Global Biogeochemical Cycles, 30(8), 1145-1165

Identifier
DOI https://doi.org/10.1594/PANGAEA.873742
Related Identifier IsSupplementTo https://doi.org/10.1002/2016GB005372
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.873742
Provenance
Creator Bach, Lennart Thomas ORCID logo; Boxhammer, Tim ORCID logo; Hildebrandt, Nicole ORCID logo; Schulz, Kai Georg ORCID logo; Riebesell, Ulf (ORCID: 0000-0002-9442-452X)
Publisher PANGAEA
Publication Year 2017
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Publication Series of Datasets; Collection
Format application/zip
Size 4 datasets
Discipline Earth System Research
Spatial Coverage (5.205 LON, 60.264 LAT)
Temporal Coverage Begin 2011-05-05T00:00:00Z
Temporal Coverage End 2011-06-05T00:00:00Z