NUMERICAL METHODS FOR ESTIMATION AND INFERENCE IN BAYESIAN VAR-MODELS (replication data)

DOI

In Bayesian analysis of vector autoregressive models, and especially in forecasting applications, the Minnesota prior of Litterman is frequently used. In many cases other prior distributions provide better forecasts and are preferable from a theoretical standpoint. Several of these priors require numerical methods in order to evaluate the posterior distribution. Different ways of implementing Monte Carlo integration are considered. It is found that Gibbs sampling performs as well as, or better, then importance sampling and that the Gibbs sampling algorithms are less adversely affected by model size. We also report on the forecasting performance of the different prior distributions.

Identifier
DOI https://doi.org/10.15456/jae.2022313.1256078281
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:776408
Provenance
Creator Kadiyala, K. Rao; Karlsson, Sune
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 1997
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics