Adjustable potential probes for band-gap predictions of extended systems through nonempirical hybrid functionals

We describe a nonempirical procedure for achieving accurate band gaps of extended systems through the insertion of suitably defined potential probes. By enforcing Koopmans' condition on the resulting localized electronic states, we determine the optimal fraction of Fock exchange to be used in the adopted hybrid functional. As potential probes, we consider point defects, the hydrogen interstitial, and various adjustable potentials that allow us to vary the energy level of the localized state in the band gap. By monitoring the delocalized screening charge, we achieve a measure of the degree of hybridization with the band states, which can be used to improve the band-gap estimate. Application of this methodology to AlP, C, and MgO yields band gaps differing by less than 0.2 eV from experiment.

Identifier
Source https://archive.materialscloud.org/record/2019.0039/v1
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:176
Provenance
Creator Bischoff, Thomas; Reshetnyak, Igor; Pasquarello, Alfredo
Publisher Materials Cloud
Publication Year 2019
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering