The conversion of semimetallic suspended graphene (Gr) to a large-gap semiconducting phase is realized by controlled adsorption of atomic hydrogen (deuterium) on free-standing Gr veils in nanoporous graphene. The effects of local rehybridization from sp² to sp³ chemical bonding are investigated by combining X-ray photoelectron spectroscopy and high-resolution electron energy-loss spectroscopy (HREELS) with ab-initio based modelling. The hydrogen adatoms on the C sites induce a stretching frequency, clearly identified in vibrational spectra thanks to the use of the D isotope, which is compatible with the predicted fingerprints of adsorption on both sides of Gr corresponding to the graphane configuration. HREELS of the deuterated samples shows a wide opening of the optical band gap, consistent with the modified spectral density observed in the valence band photoemission. The results are in agreement with ab-initio calculations by GW and Bethe-Salpeter equation approaches, showing a large quasiparticle gap opening and huge excitonic binding energy