This set of data consists of experimental data. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don’t induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status. This forms part of a larger collection of data considering differences in visual ability, the diagnosis of sequence-space synaesthesia and the relationship to autism (see Related Resources). In this research programme we will investigate enhanced memory in synaesthesia (e.g. experiencing colours for words). Our general approach is to treat synaesthesia as a 'test case' to address other important research questions. For instance, we consider how synaesthesia can inform general theories of memory. Importantly, not all aspects of memory are enhanced in synaesthesia and this can provide insights into how the memory system is structured. Indeed it is not trivially the case that material that elicits 'extra' sensations are better remembered: some material that does not evoke extra sensations (such as abstract figures) are also better remembered by synaesthetes. We suggest that synaesthetes have widespread changes in their perceptual systems (including but not limited to their extra experiences) and that systems supporting perception can also be engaged in memory. We will use both standard and bespoke tests of memory to explore which aspects of memory are enhanced and we will explore how individual differences in perception (in non-synaesthetes) may relate to performance on certain memory tasks.
Recognition memory study for different categories of visual stimuli. In Experiment 1, we used four kinds of stimuli presented visually and all achromatic: written words, written non-words, scenes, and fractals. The second study uses the same recognition memory paradigm but involves scenes contrasted with words. The scenes are manipulated in one of three ways (by changing a color, orientation or object) and the study is loosely based on Pritchard et al. (2013). In that study, participants (synaesthetes and controls) were shown meaningless visual stimuli comprising of a conjunction of shape, color and location. Experiment 2 uses images of real world scenes in which the color of an object is changed between study and test (e.g., a chair is changed from red to green), or the orientation is changed (mirror reversal), or an object is added/removed from the scene. For more information, see the publication under Related Resources.