Automated mineralogy particle dataset: dry magnetic separation of skarn ore

DOI

This data set origins from the AFK (“Aufbereitung feinkörniger Komplexerze”, BMBF grant number 033R128) project. The main target within this project was to produce a cassiterite concentrate, which is suitable for the subsequent production of tin. Various processing steps and the material specific behaviour were investigated within the progress of the project. The present data set derives from dry magnetic separation tests. More information can be found in the "readme.pdf" file attached.

{"references": ["Kern, M., M\u00f6ckel, R., Krause, J., Teichmann, J.and Gutzmer, J. 2018. 'Calculating the deportment of a fine-grained and compositionally complex Sn skarn with a modified approach for automated mineralogy', Minerals Engineering, 116: 213-25, doi:10.1016/j.mineng.2017.06.006.", "Pereira, Lucas, Frenzel, Max, Khodadadzadeh, Mahdi, Tolosana-Delgado, Raimonand Gutzmer, Jens. 2021. 'A self-adaptive particle-tracking method for minerals processing', Journal of Cleaner Production, 279: 123711, doi:10.1016/j.jclepro.2020.123711."]}

Identifier
DOI https://doi.org/10.14278/rodare.1096
Related Identifier https://www.hzdr.de/publications/Publ-33003
Related Identifier https://doi.org/10.14278/rodare.1095
Related Identifier https://rodare.hzdr.de/communities/energy
Related Identifier https://rodare.hzdr.de/communities/rodare
Metadata Access https://rodare.hzdr.de/oai2d?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:rodare.hzdr.de:1096
Provenance
Creator Buchmann, Markus; Kern, Marius ORCID logo; Pereira, Lucas ORCID logo; Frenzel, Max (ORCID: 0000-0001-6625-559X); Tolosana-Delgado, Raimon ORCID logo; van den Boogaart, K. Gerald (ORCID: 0000-0003-4646-943X); Gutzmer, Jens ORCID logo
Publisher Rodare
Publication Year 2021
Rights Creative Commons Attribution 4.0 International; Open Access; https://creativecommons.org/licenses/by/4.0/legalcode; info:eu-repo/semantics/openAccess
OpenAccess true
Contact https://rodare.hzdr.de/support
Representation
Language English
Resource Type Dataset
Discipline Life Sciences; Natural Sciences; Engineering Sciences