Benchmark data for: Machine Learning for geospatial vector data classification

DOI

Benchmark data for paper "Deep Learning for Classification Tasks on Geospatial Vector Polygons". Core of the data is in the six numpy zip files. Each numpy zip contains the original WKT geometries as zlib compressed blobs, variable and fixed length geometry vectors, fourier descriptors, and a class dictionary.

The zlib compressed wkt strings can be decompressed with

import numpy as np import zlib

loaded = np.load('archaeology_train_v8.npz') wkts_zipped = loaded['wkts_zlib_compressed'] for wkt_zipped in wkts_zipped: &nbsp wkt = str.decode(zlib.decompress(wkt_zipped))

Numpy, 1.14

Identifier
DOI https://doi.org/10.34894/AWULXE
Metadata Access https://dataverse.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.34894/AWULXE
Provenance
Creator Veer, van 't, Rein ORCID logo
Publisher DataverseNL
Contributor Veer, van 't, Rein
Publication Year 2018
Rights info:eu-repo/semantics/openAccess
OpenAccess true
Contact Veer, van 't, Rein (Vrije Universiteit Amsterdam)
Representation
Resource Type Numpy zip, csv; Dataset
Format text/csv; application/octet-stream; application/vnd.oasis.opendocument.spreadsheet
Size 159915985; 18167905; 161827968; 18236704; 8419430; 10781935; 17260792; 8520137; 16008399; 4537485; 44352763; 411241794; 12051020; 9023800; 24876; 164500832; 13103737; 120133455
Version 9.0
Discipline Earth and Environmental Science; Environmental Research; Geosciences; Natural Sciences