Automatic evaluation of tumour budding in immunohistochemically stained colorectal carcinomas and correlation to clinical outcome [Dataset]

DOI

Data used for the implementation of the proposed tumor budding detection In the publication “Automatic evaluation of tumour budding in immunohistochemically stained colorectal carcinomas and correlation to clinical outcome” we described a multistep approach to detect tumor buds in immunohistochemically stained images: . Step 1: Color and size based segmentation. Step 2: Validation of the detected objects (proposals) by a spatial clustering and a convolutional neural network (MatConvNet by A. Vedaldi et al. [1]).

The Matlab-Code for the project is available on GitHub.

The data for the CNN-training and validation are presented as .mat-file. It contains a struct element with the images in a 4D-matrix, the label (“bud” and “no bud”) and a set (“training” and “validation”). Please refer to the "Terms" tab below for usage and reproduction terms. References: 1. Vedaldi, A., K. Lenc, and A. Gupta. MatConvNet: CNNs for MATLAB. 2015; Available from: http://www.vlfeat.org/matconvnet/.

Identifier
DOI https://doi.org/10.11588/data/XJAOC4
Metadata Access https://heidata.uni-heidelberg.de/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.11588/data/XJAOC4
Provenance
Creator Weis, Cleo-Aron
Publisher heiDATA
Contributor Weis, Cleo-Aron; heiDATA: Heidelberg Research Data Repository
Publication Year 2018
Rights info:eu-repo/semantics/openAccess
OpenAccess true
Contact Weis, Cleo-Aron (Institute of Pathology Mannheim,Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany)
Representation
Resource Type Dataset
Format application/octet-stream; image/png; image/tiff
Size 253078575; 925034; 18893264; 18898462; 18898604; 18898796; 18899622; 18896544; 18892276; 18895158; 18899308; 18896894; 18898602; 18894522; 7679014; 7704380; 7724450; 7721228; 7727192; 7720670; 7728302; 7716932; 7718640; 7719566; 7724658; 7721062
Version 1.1
Discipline Life Sciences; Medicine