Tailoring magnetism of graphene nanoflakes via tip-controlled dehydrogenation

DOI

Atomically precise graphene nanoflakes called nanographenes have emerged as a promising platform to realize carbon magnetism. Their ground state spin configuration can be anticipated by Ovchinnikov-Lieb rules based on the mismatch of π electrons from two sublattices. While rational geometrical design achieves specific spin configurations, further direct control over the π electrons offers a desirable extension for efficient spin manipulations and potential quantum device operations. To this end, in a recent publication, we applied a site-specific dehydrogenation using a scanning tunneling microscope tip to nanographenes deposited on a Au(111) substrate, which showed the capability of precisely tailoring the underlying π-electron system and therefore efficiently manipulating their magnetism. Through first-principles calculations and tight-binding meanfield-Hubbard modeling, we demonstrated that the dehydrogenation-induced Au—C bond formation along with the resulting hybridization between frontier π orbitals and Au substrate states effectively eliminate the unpaired π electron. Our results establish an efficient technique for controlling the magnetism of nanographenes. This record contains data that support the scientific results discussed in our manuscript.

Identifier
DOI https://doi.org/10.24435/materialscloud:yh-fj
Related Identifier https://doi.org/10.1103/PhysRevLett.132.046201
Related Identifier https://renkulab.io/projects/new?data=eyJ0aXRsZSI6ICJNYXRlcmlhbHMgQ2xvdWQgQXJjaGl2ZSAtIGdvYmxldC5haWlkYSIsICJ1cmwiOiAiaHR0cHM6Ly9naXRodWIuY29tL1N3aXNzRGF0YVNjaWVuY2VDZW50ZXIvY29udHJpYnV0ZWQtcHJvamVjdC10ZW1wbGF0ZXMiLCAicmVmIjogIm1haW4iLCAidGVtcGxhdGUiOiAiQ3VzdG9tL2FpaWRhIiwgInZhcmlhYmxlcyI6IHsiZGVzY3JpcHRpb24iOiAiRXhwbG9yaW5nIEFpaURBIGFyY2hpdmUgZmlsZSBgZ29ibGV0LmFpaWRhYCBvZiByZWNvcmQgW2RvaTp7J2NsaWVudCc6ICdkYXRhY2l0ZScsICdwcm92aWRlcic6ICdkYXRhY2l0ZScsICdpZGVudGlmaWVyJzogJzEwLjI0NDM1L21hdGVyaWFsc2Nsb3VkOnloLWZqJ31dKGh0dHBzOi8vZG9pLm9yZy97J2NsaWVudCc6ICdkYXRhY2l0ZScsICdwcm92aWRlcic6ICdkYXRhY2l0ZScsICdpZGVudGlmaWVyJzogJzEwLjI0NDM1L21hdGVyaWFsc2Nsb3VkOnloLWZqJ30pIiwgImFyY2hpdmVfdXJsIjogImh0dHBzOi8vMTI3LjAuMC4xL2FwaS9yZWNvcmRzL2hlMXh6LXljMTQyL2ZpbGVzL2dvYmxldC5haWlkYS9jb250ZW50P3JlY29yZF9pZD1oZTF4ei15YzE0MiZmaWxlX2lkPTZmODZjZjc3LTI3ZDUtNDA3Ny1hYWIwLTA4MTA2YzU5NmYxOSZmaWxlbmFtZT1nb2JsZXQuYWlpZGEifX0=
Related Identifier https://archive.materialscloud.org/communities/mcarchive
Related Identifier https://doi.org/10.24435/materialscloud:ap-n2
Metadata Access https://archive.materialscloud.org/oai2d?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2193
Provenance
Creator Zhao, Chenxiao; Huang, Qiang; Valenta, Leoš; Eimre, Kristjan; Yang, Lin; V. Yakutovich, Aliaksandr; Xu, Wangwei; Feng, Xinliang; Juríček, Michal; Fasel, Roman; Ruffieux, Pascal; Pignedoli, Carlo A.
Publisher Materials Cloud
Contributor Zhao, Chenxiao; Ruffieux, Pascal; Pignedoli, Carlo A.
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type info:eu-repo/semantics/other
Format application/octet-stream; application/gzip; text/markdown
Discipline Materials Science and Engineering