A deep learning dataset for metal multiaxial fatigue life prediction

DOI

In this work, we present a comprehensive dataset designed to facilitate the prediction of metal fatigue life using deep learning techniques. The dataset includes detailed experimental data from 40 different metallic materials, comprising a total of 1195 data points under 48 distinct loading paths. Each data point is stored in a CSV file, capturing the loading path as a time-series with axial and tangential stress or strain values.The primary purpose of this dataset is to support the development and validation of deep learning models aimed at accurately predicting the fatigue life of metals under various loading conditions. This dataset includes stress-controlled and strain-controlled data, ensuring a broad representation of experimental scenarios. Additionally, an Excel file accompanies the dataset, providing detailed mechanical properties of each material, such as elastic modulus, tensile strength, yield strength, and Poisson's ratio, along with references to the original experimental sources.This dataset is intended for researchers in materials science and mechanical engineering, offering a robust foundation for training and testing deep learning algorithms in fatigue analysis. By making this dataset publicly available, we aim to foster collaboration and further advancements in the field of metal fatigue prediction. Researchers are encouraged to utilize and contribute to the dataset, thereby enhancing its scope and applicability.

Identifier
DOI https://doi.org/10.24435/materialscloud:wt-98
Related Identifier https://doi.org/10.1111/j.1460-2695.2004.00740.x
Related Identifier https://doi.org/10.1016/j.ijfatigue.2005.05.014
Related Identifier https://doi.org/10.1016/j.ijfatigue.2019.105202
Related Identifier https://doi.org/10.1016/j.ijfatigue.2019.01.003
Related Identifier https://ntrs.nasa.gov/citations/19880015632
Related Identifier https://doi.org/10.1016/j.ijpvp.2021.104393
Related Identifier https://doi.org/10.1016/j.ijfatigue.2021.106174
Related Identifier https://doi.org/10.1016/j.ijfatigue.2007.07.005
Related Identifier https://doi.org/10.1016/j.ijfatigue.2017.03.042
Related Identifier https://doi.org/10.1515/mt-2022-0172
Related Identifier https://doi.org/10.1111/j.1460-2695.1993.tb00115.x
Related Identifier https://doi.org/10.1016/S1566-1369(03)80006-7
Related Identifier https://doi.org/10.1016/j.ijfatigue.2005.07.007
Related Identifier https://doi.org/10.1016/j.ijfatigue.2020.105818
Related Identifier https://doi.org/10.1016/j.ijfatigue.2013.08.028
Related Identifier https://doi.org/10.1016/j.ijfatigue.2010.09.020
Related Identifier https://doi.org/10.1016/j.msea.2012.03.039
Related Identifier https://doi.org/10.1111/ffe.13048
Related Identifier https://doi.org/10.1016/j.ijfatigue.2003.11.005
Related Identifier https://doi.org/10.1115/1.2812377
Related Identifier https://doi.org/10.7666/d.d167264
Related Identifier https://doi.org/10.7666/d.Y2407972
Related Identifier https://doi.org/10.7666/d.Y2887183
Related Identifier https://doi.org/10.1016/j.ijfatigue.2015.12.002
Related Identifier https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=BF47DB6BB813C41F4B9C8626A594DAAF2000
Related Identifier https://doi.org/10.1016/j.ijfatigue.2006.10.028
Related Identifier https://doi.org/10.1115/1.3008041
Related Identifier https://doi.org/10.1111/j.1460-2695.1988.tb01169.x
Related Identifier https://doi.org/10.1520/STP36242S
Related Identifier https://doi.org/10.1016/S0142-1123(02)00013-0
Related Identifier https://doi.org/10.1016/j.ijfatigue.2017.04.011
Related Identifier https://doi.org/10.1016/j.msea.2006.06.014
Related Identifier https://doi.org/10.1115/1.2804529
Related Identifier https://doi.org/10.1115/1.3225707
Related Identifier https://archive.materialscloud.org/communities/mcarchive
Related Identifier https://doi.org/10.24435/materialscloud:ar-nw
Metadata Access https://archive.materialscloud.org/oai2d?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2252
Provenance
Creator Chen, Shuonan; Bai*, Yongtao; Zhou*, Xuhong; Yang, Ao
Publisher Materials Cloud
Contributor Chen, Shuonan; Bai*, Yongtao; Zhou*, Xuhong
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type info:eu-repo/semantics/other
Format application/zip; text/markdown
Discipline Materials Science and Engineering