Theory of twin strengthening in fcc high entropy alloys

DOI

Twinning in fcc High Entropy Alloys (HEAs) has been implicated as a possible mechanism for hardening that enables enhanced ductility. Here, a theory for the twinning stress is developed analogous to recent theories for yield stress. Specifically, the stress to move a twin dislocation, i.e an fcc partial dislocation moving along a pre-existing twin boundary, through a random multicomponent alloy is determined. A reduced elasticity theory is then introduced in which atoms interact with the twin dislocation pressure field and the twin boundary. The theory is applied to NiCoCr using results from both interatomic potentials and elasticity theory. Results are also used to predict the increased stress for the motion of (i) a single partial dislocation leaving a trailing stacking fault and (ii) adjacent partial dislocations involved in twin nucleation. Increased strength is predicted for all processes involved in the nucleation and growth of fcc twins. Comparison to single-crystal experiments at room temperature then suggests that twinning is controlled by twin nucleation, with reasonable quantitative agreement. When solute/fault interactions are neglected, the theory shows that twinning and lattice flow stresses are related. The theory also provides insight into how other dilute solute additions could suppress twinning, as found experimentally.

Identifier
DOI https://doi.org/10.24435/materialscloud:h4-0e
Related Identifier https://doi.org/10.1016/j.actamat.2021.117119
Related Identifier https://www.sciencedirect.com/science/article/pii/S1359645421004997
Related Identifier https://archive.materialscloud.org/communities/mcarchive
Related Identifier https://doi.org/10.24435/materialscloud:va-e8
Metadata Access https://archive.materialscloud.org/oai2d?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:1078
Provenance
Creator Kubilay, Recep Ekin; Curtin, W.A.
Publisher Materials Cloud
Contributor Kubilay, Recep Ekin; Curtin, W.A.
Publication Year 2021
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type info:eu-repo/semantics/other
Format application/gzip; text/plain; text/markdown
Discipline Materials Science and Engineering