We document differences in shell damage and shell thickness in a bivalve mollusc (Laternula elliptica) from seven sites around Antarctica with differing exposures to ice movement. These range from 60% of the sea bed impacted by ice per year (Hangar Cove, Antarctic Peninsula) to those protected by virtually permanent sea ice cover (McMurdo Sound). Patterns of shell damage consistent with blunt force trauma were observed in populations where ice scour frequently occurs; damage repair frequencies and the thickness of shells correlated positively with the frequency of iceberg scour at the different sites with the highest repair rates and thicker shells at Hangar Cove (74.2% of animals damaged) compared to the other less impacted sites (less than 10% at McMurdo Sound). Genetic analysis of population structure using Amplified Fragment Length Polymorphisms (AFLPs) revealed no genetic differences between the two sites showing the greatest difference in shell morphology and repair rates. Taken together, our results suggest that L. elliptica exhibits considerable phenotypic plasticity in response to geographic variation in physical disturbance.
Supplement to: Harper, Elizabeth M; Clark, Melody S; Hoffman, Joseph I; Philipp, Eva E R; Peck, Loyd S; Morley, Simon A (2012): Iceberg Scour and Shell Damage in the Antarctic Bivalve Laternula elliptica. PLoS ONE, 7(9), e46341