De novo gene evolution of antifreeze glycoproteins in codfishes revealed by whole genome sequence data

New genes can arise through duplication of a pre-existing gene or de novo from non-coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization. In notothenioids, afgps evolved from an extant gene, yet the evolutionary origin of afgps in codfishes is unknown. Here, we demonstrate that afgps in codfishes have evolved de novo from non-coding DNA 13-18 Ma, coinciding with the cooling of the northern hemisphere. Using whole-genome sequence data from several codfishes and notothenioids, we find higher copy number of afgp in species exposed to more severe freezing indicating a gene dosage effect. Notably, antifreeze function is lost in one lineage of codfishes analogous to the afgp losses in non-Antarctic notothenioids. This indicates that selection can eliminate this protein when freezing is no longer imminent. Additionally, we show that evolution of afgp-assisting antifreeze potentiating protein genes (afpps) in notothenioids coincides with origin and lineage-specific losses of afgp. The origin of afgps in codfishes is one of the first examples of an essential gene born from non-coding DNA in a non-model species. Our study underlines the power of comparative genomics to uncover past molecular signatures of genome evolution, and further highlighting the impact of de novo gene origin in response to a changing selection regime.

Identifier
Source https://data.blue-cloud.org/search-details?step=~012AC0051968B571868D038A6FE0AE0623F27D48947
Metadata Access https://data.blue-cloud.org/api/collections/AC0051968B571868D038A6FE0AE0623F27D48947
Provenance
Instrument Illumina HiSeq 2000; ILLUMINA
Publisher Blue-Cloud Data Discovery & Access service; ELIXIR-ENA
Publication Year 2024
OpenAccess true
Contact blue-cloud-support(at)maris.nl
Representation
Discipline Marine Science
Temporal Point 2017-10-26T00:00:00Z