Low-energy modeling of three-dimensional topological insulator nanostructures

DOI

We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band k·p bulk model Hamiltonian for the Bi₂Se₃ family of topological insulators, we derive new parameter sets for Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃. We consider a fitting strategy applied to ab initio band structures around the Γ point that ensures a quantitatively accurate description of the low-energy bulk and surface states, while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices. This dataset contains the data used in the corresponding publication.

Identifier
DOI https://doi.org/10.24435/materialscloud:mx-bn
Related Identifier https://doi.org/10.1103/PhysRevMaterials.8.084204
Related Identifier https://doi.org/10.48550/arXiv.2404.13959
Related Identifier https://doi.org/10.5281/zenodo.7284739
Related Identifier https://doi.org/10.5281/zenodo.3628251
Related Identifier https://doi.org/10.1038/s41524-020-00482-5
Related Identifier https://renkulab.io/projects/new?data=eyJ0aXRsZSI6ICJNYXRlcmlhbHMgQ2xvdWQgQXJjaGl2ZSAtIGV4cG9ydF9ERlQuYWlpZGEiLCAidXJsIjogImh0dHBzOi8vZ2l0aHViLmNvbS9Td2lzc0RhdGFTY2llbmNlQ2VudGVyL2NvbnRyaWJ1dGVkLXByb2plY3QtdGVtcGxhdGVzIiwgInJlZiI6ICJtYWluIiwgInRlbXBsYXRlIjogIkN1c3RvbS9haWlkYSIsICJ2YXJpYWJsZXMiOiB7ImRlc2NyaXB0aW9uIjogIkV4cGxvcmluZyBBaWlEQSBhcmNoaXZlIGZpbGUgYGV4cG9ydF9ERlQuYWlpZGFgIG9mIHJlY29yZCBbZG9pOnsnY2xpZW50JzogJ2RhdGFjaXRlJywgJ3Byb3ZpZGVyJzogJ2RhdGFjaXRlJywgJ2lkZW50aWZpZXInOiAnMTAuMjQ0MzUvbWF0ZXJpYWxzY2xvdWQ6bXgtYm4nfV0oaHR0cHM6Ly9kb2kub3JnL3snY2xpZW50JzogJ2RhdGFjaXRlJywgJ3Byb3ZpZGVyJzogJ2RhdGFjaXRlJywgJ2lkZW50aWZpZXInOiAnMTAuMjQ0MzUvbWF0ZXJpYWxzY2xvdWQ6bXgtYm4nfSkiLCAiYXJjaGl2ZV91cmwiOiAiaHR0cHM6Ly8xMjcuMC4wLjEvYXBpL3JlY29yZHMvOWIyNWEtY2U1NTQvZmlsZXMvZXhwb3J0X0RGVC5haWlkYS9jb250ZW50P3JlY29yZF9pZD05YjI1YS1jZTU1NCZmaWxlX2lkPWQxMjY1ODg1LTE1YTMtNDkxMy1hNjY2LWViYTBkNzI3NWFjMyZmaWxlbmFtZT1leHBvcnRfREZULmFpaWRhIn19
Related Identifier https://archive.materialscloud.org/communities/mcarchive
Related Identifier https://doi.org/10.24435/materialscloud:bp-zg
Metadata Access https://archive.materialscloud.org/oai2d?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2129
Provenance
Creator Zsurka, Eduárd; Wang, Cheng; Legendre, Julian; Di Miceli, Daniele; Serra, Llorenç; Grützmacher, Detlev; Schmidt, Thomas L.; Rüßmann, Philipp; Moors, Kristof
Publisher Materials Cloud
Contributor Rüßmann, Philipp
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type info:eu-repo/semantics/other
Format application/octet-stream; text/markdown; application/zip; text/plain
Discipline Materials Science and Engineering