Density functional theory study of silicon nanowires functionalized by grafting organic molecules

Functionalizing Silicon Nanowires (SiNWs) through covalent attachment of organic molecules offers diverse advantages, including surface passivation, introduction of new functionalities, and enhanced material performance in applications like electronic devices and biosensors. Given the wide range of available functional molecules, systematic large-scale screening is crucial. Therefore, we developed an automated computational workflow using Python scripts in conjunction with the AiiDa framework to explore structural configurations of functional molecules adsorbed onto silicon surfaces. This workflow generates multiple adhesion configurations corresponding to different binding orientations using surface and functional molecule structures as inputs.   This dataset contains data related to the structural optimization of molecules with single, double, and triple carbon-carbon bonds attached to the nanowire surface in various adhesion configurations. We describe the chemisorption on SiNWs using the slab models for the Si facets since our reference are samples with diameters of SiNWs around 50 nm, while the quantum confinement effects are important for diameters below 10 nm. For each configuration, structural characterization was conducted by calculating quantities including the bond distance between the two carbons closest to the surface and their respective bond angle relative to the z-axis, the carbon-silicon bond distance and its respective bond angle relative to the z-axis, along with the molecule's rotation angle in the xy plane. The values obtained are summarized in the main folder. The version v1 of dataset contains data related to the Si(111) surface and alkanes, alkenes, and alkynes with lengths from C2 to C10. The dataset will be extended to characterize the Si110 surface of the nanowire and explore longer molecules ranging from C12 to C18. For each system the most stable configuration will be identified, and the analysis of the electronic properties will be conducted.

Identifier
Source https://archive.materialscloud.org/record/2024.81
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2201
Provenance
Creator Marchio, Sara; Buonocore, Francesco; Giusepponi, Simone; Celino, Massimo
Publisher Materials Cloud
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering