Oxygen vacancy induced defect dipoles in BiVO4 for photoelectrocatalytic partial oxidation of methane

DOI

A strong driving force for charge separation and transfer in semiconductors is essential for designing effective photoelectrodes for solar energy conversion. While defect engineering and polarization alignment can enhance this process, their potential interference within a photoelectrode remains unclear. Here we show that oxygen vacancies in bismuth vanadate (BiVO4) can create defect dipoles due to a disruption of symmetry. The modified photoelectrodes exhibit a strong correlation between charge separation and transfer capability and external electrical poling, which is not seen in unmodified samples. Applying poling at -150 Volt boosts charge separation and transfer efficiency to over 90 %. A photocurrent density of 6.3 mA cm-2 is achieved on the photoelectrode after loading with a nickel-iron oxide-based cocatalyst. Furthermore, using generated holes for methane partial oxidation can produce methanol with a Faradaic efficiency of approximately 6 %. These findings provide valuable insights into the photoelectrocatalytic conversion of greenhouse gases into valuable chemical products.

Identifier
DOI https://doi.org/10.24435/materialscloud:gf-jd
Related Identifier https://doi.org/10.1038/s41467-024-53426-8
Related Identifier https://archive.materialscloud.org/communities/mcarchive
Related Identifier https://doi.org/10.24435/materialscloud:1g-4c
Metadata Access https://archive.materialscloud.org/oai2d?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2368
Provenance
Creator Li, Xianlong; Wang*, Zhiliang; Sasani, Alireza; Baktash, Ardeshir; Wang, Kai; Lu, haijiao; you, jiakang; Chen, Peng; Chen, Ping; Bao, Yifan; Zhang, Shujun; Liu, Gang; Wang*, Lianzhou
Publisher Materials Cloud
Contributor Li, Xianlong; Wang*, Zhiliang; Sasani, Alireza; Baktash, Ardeshir; Wang, Kai; Lu, haijiao; you, jiakang; Chen, Peng; Chen, Ping; Bao, Yifan; Zhang, Shujun; Liu, Gang; Wang*, Lianzhou
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type info:eu-repo/semantics/other
Format application/octet-stream; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet; text/markdown
Discipline Materials Science and Engineering