Replication Data for: OnionVQE optimization strategy for ground state preparation on NISQ devices

DOI

The variational quantum eigensolver (VQE) is one of the most promising and widely used algorithms for exploiting the capabilities of current Noisy Intermediate-Scale Quantum (NISQ) devices. However, VQE algorithms suffer from a plethora of issues, such as barren plateaus, local minima, quantum hardware noise, and limited qubit connectivity, thus posing challenges for their successful deployment on hardware and simulators. In this work, we propose a VQE optimization strategy that builds upon recent advances in the literature, and exhibits very shallow circuit depths when applied to the specific system of interest, namely a model Hamiltonian representing a cuprate superconductor. These features make our approach a favorable candidate for generating good ground state approximations on current NISQ devices. Our findings illustrate the potential of VQE algorithmic development for leveraging the full capabilities of NISQ devices.

Identifier
DOI https://doi.org/10.34810/data2162
Related Identifier IsSupplementTo https://doi.org/10.1088/2058-9565/ad8a85
Metadata Access https://dataverse.csuc.cat/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.34810/data2162
Provenance
Creator Gratsea, Katerina (ORCID: 0000-0001-8935-796X); Selisko, Johannes ORCID logo; Amsler, Maximilian ORCID logo; Wever, Christopher ORCID logo; Eckl, Thomas ORCID logo; Samsonidze, Georgy ORCID logo
Publisher CORA.Repositori de Dades de Recerca
Contributor Gratsea, katerina; Fundació Institut de Ciències Fotòniques
Publication Year 2025
Funding Reference European Union’s Horizon 2020 847517 ; European Research Council NOQIA ; Agencia Estatal de Investigacion PGC2018-097027-B-I00 ; Agencia Estatal de Investigacion 10.13039/ 501100011033 ; Agencia Estatal de Investigacion CEX2019-000910-S ; Agencia Estatal de Investigacion PID2019-106901GBI00 ; Agencia Estatal de Investigacion FPI ; Agencia Estatal de Investigacion PCI2019-111828-2 ; Agencia Estatal de Investigacion PCI2022-132919 ; Agencia Estatal de Investigacion QUSPIN RTC2019-007196-7) ; Ministerio de Ciencia, Innovación y Universidades PRTR-C17.I1) ; Generalitat de Catalunya CERCA ; Fundació Cellex; ; Fundació Mir-Puig ; Agència de Gestió d'Ajuts Universitaris i de Recerca 2021 SGR 01452 ; Agència de Gestió d'Ajuts Universitaris i de Recerca U16-011424 ; Barcelona Supercomputing Center MareNostrum FI-2023-1-0013) ; European Union PASQuanS2.1 ; European Union 101113690 ; EU Horizon 2020 899794 ; EU Horizon Europe Program 101080086 ; National Science Centre, Poland 2016/20/W/ST4/00314) ; Fundació Institut de Ciències Fotòniques QuantumGaudi ; European Union’s Horizon 2020 101029393 ; European Union’s Horizon 2020 847648 ; ‘La Caixa’ ID100010434 ; ‘La Caixa’ LCF/BQ/PI19/11690013 ; ‘La Caixa’ LCF/BQ/PI20/11760031 ; ‘La Caixa’ LCF/BQ/PR20/11770012 ; ‘La Caixa’ LCF/BQ/PR21/11840013
Rights CC BY-NC-ND 4.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/licenses/by-nc-nd/4.0
OpenAccess true
Contact Gratsea, katerina (Fundació Institut de Ciències Fotòniques)
Representation
Resource Type Simulation data; Dataset
Format image/jpeg; text/plain; text/tab-separated-values
Size 110921; 100637; 90193; 97637; 63864; 79855; 66825; 53238; 50838; 78975; 66101; 95459; 7124; 64190; 74860; 313
Version 1.0
Discipline Chemistry; Natural Sciences; Physics