Neural Solvers

DOI

Neural Solvers are neural network-based solvers for partial differential equations and inverse problems. The framework implements scalable physics-informed neural networks Physics-informed neural networks allow strong scaling by design. Therefore, we have developed a framework that uses data parallelism to accelerate the training of physics-informed neural networks significantly. To implement data parallelism, we use the Horovod framework, which provides near-ideal speedup on multi-GPU regimes.

Identifier
DOI https://doi.org/10.14278/rodare.1194
Related Identifier https://arxiv.org/pdf/2009.03730.pdf
Related Identifier https://www.hzdr.de/publications/Publ-33172
Related Identifier https://doi.org/10.14278/rodare.1193
Related Identifier https://rodare.hzdr.de/communities/matter
Related Identifier https://rodare.hzdr.de/communities/rodare
Metadata Access https://rodare.hzdr.de/oai2d?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:rodare.hzdr.de:1194
Provenance
Creator Stiller, Patrick (ORCID: 0000-0003-1950-069X); Zhdanov, Maksim; Rustamov, Jeyhun; Bethke, Friedrich; Hoffmann, Nico
Publisher Rodare
Publication Year 2021
Rights Creative Commons Attribution 1.0 Generic; Open Access; https://creativecommons.org/licenses/by/1.0/legalcode; info:eu-repo/semantics/openAccess
OpenAccess true
Contact https://rodare.hzdr.de/support
Representation
Language English
Resource Type Software
Version 0.1
Discipline Life Sciences; Natural Sciences; Engineering Sciences