Quantum-accelerated supercomputing atomistic simulations for corrosion inhibition

DOI

This dataset supports a systematic implementation of hybrid quantum-classical computational methods for investigating corrosion inhibition mechanisms on aluminum surfaces. The work presents an integrated workflow combining density functional theory (DFT) with quantum algorithms through an active space embedding scheme, specifically applied to studying 1,2,4-Triazole and 1,2,4-Triazole-3-thiol inhibitors on Al111 surfaces. The methodology employs the orb-d3-v2 machine learning potential for rapid geometry optimizations, followed by accurate DFT calculations using CP2K with PBE functional and Grimme's D3 dispersion corrections. Our implementation leverages the ADAPT-VQE quantum algorithm with benchmarking against classical DFT calculations, achieving binding energies of -0.386 eV and -1.279 eV for 1,2,4-Triazole and 1,2,4-Triazole-3-thiol, respectively.

Identifier
DOI https://doi.org/10.24435/materialscloud:e2-dr
Related Identifier https://arxiv.org/abs/2412.00951
Related Identifier https://archive.materialscloud.org/communities/mcarchive
Related Identifier https://doi.org/10.24435/materialscloud:b0-jd
Metadata Access https://archive.materialscloud.org/oai2d?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2511
Provenance
Creator Elgammal, Karim; Maußner, Marc
Publisher Materials Cloud
Contributor Elgammal, Karim; Maußner, Marc
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; MIT License; https://opensource.org/licenses/MIT
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type info:eu-repo/semantics/other
Format application/zip; text/markdown
Discipline Materials Science and Engineering