Improvement of eukaryotic protein predictions from soil metagenomes

DOI

During the last decades, metagenomics has highlighted the diversity of microorganisms from environmental or host-associated samples. Most metagenomics public repositories use annotation pipelines tailored for prokaryotes regardless of the taxonomic origin of contigs. Consequently, eukaryotic contigs with intrinsically different gene features, are not optimally annotated. Using a bioinformatics pipeline, we have filtered 7.9 billion contigs from 6,872 soil metagenomes in the JGI's IMG/M database to identify eukaryotic contigs. We have re-annotated genes using eukaryote-tailored methods, yielding 8 million eukaryotic proteins and over 300,000 orphan proteins lacking homology in public databases. Comparing the gene predictions we made with initial JGI ones on the same contigs, we confirmed our pipeline improves eukaryotic proteins completeness and contiguity in soil metagenomes. The improved quality of eukaryotic proteins combined with a more comprehensive assignment method yielded more reliable taxonomic annotation. This dataset of eukaryotic soil proteins with improved completeness, quality and reliable taxonomic annotation is of interest for any scientist aiming at studying the composition, biological functions and gene flux in soil communities involving eukaryotes.

Python, 3.8

IMG/M server of the Joint Genome Institute

Identifier
DOI https://doi.org/10.15454/E2VTRB
Metadata Access https://entrepot.recherche.data.gouv.fr/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.15454/E2VTRB
Provenance
Creator Belliardo, Carole ORCID logo; Georgios Koutsovoulos ORCID logo; Corinne Rancurel ORCID logo; Mathilde Clément; Justine Lipuma; Marc Bailly-Bechet ORCID logo; Etienne Danchin ORCID logo
Publisher Recherche Data Gouv
Contributor Belliardo, Carole; Etienne Danchin
Publication Year 2021
Rights etalab 2.0; info:eu-repo/semantics/openAccess; https://spdx.org/licenses/etalab-2.0.html
OpenAccess true
Contact Belliardo, Carole (INRAE)
Representation
Resource Type Dataset
Format application/octet-stream; text/tsv; text/html; text/plain; text/tab-separated-values; application/pdf
Size 3237080287; 1927714864; 643689233; 1744792; 2026470140; 162531; 83185735; 68789816; 29287805; 389464; 49793
Version 4.1
Discipline Agriculture, Forestry, Horticulture; Computer Science; Agricultural Sciences; Agriculture, Forestry, Horticulture, Aquaculture; Agriculture, Forestry, Horticulture, Aquaculture and Veterinary Medicine; Life Sciences