Proximity-induced Cooper pairing at low and finite energies in the gold Rashba surface state

DOI

Multi-band effects in superconducting heterostructures provide a rich playground for unconventional physics. We combine two complementary approaches based on density-functional theory (DFT) and effective low-energy model theory in order to investigate the proximity effect in a gold overlayer on the s-wave superconductor aluminium. We explain both theoretical approaches and intertwine the effective model and DFT analysis. This allows us to predict finite energy superconducting avoided crossings due to the interplay of the Rashba surface state of Au, and hybridization with the electronic structure of superconducting Al. We investigate the nature of the induced superconducting pairing and analyze their mixed singlet-triplet character. Our findings demonstrate the general recipes to explore material systems that exhibit novel finite-energy pairings.

This dataset accompanies a publication where the data is presented and discussed in detail.

Identifier
DOI https://doi.org/10.24435/materialscloud:20-9z
Related Identifier https://doi.org/10.1103/PhysRevResearch.5.043181
Related Identifier https://doi.org/10.48550/arXiv.2307.13990
Related Identifier https://doi.org/10.1103/PhysRevB.105.125143
Related Identifier https://doi.org/10.1038/s41524-020-00482-5
Related Identifier https://doi.org/10.5281/zenodo.7284739
Related Identifier https://doi.org/10.5281/zenodo.3628251
Related Identifier https://renkulab.io/projects/new?data=eyJ0aXRsZSI6ICJNYXRlcmlhbHMgQ2xvdWQgQXJjaGl2ZSAtIGV4cG9ydF9BbF9BdS5haWlkYSIsICJ1cmwiOiAiaHR0cHM6Ly9naXRodWIuY29tL1N3aXNzRGF0YVNjaWVuY2VDZW50ZXIvY29udHJpYnV0ZWQtcHJvamVjdC10ZW1wbGF0ZXMiLCAicmVmIjogIm1haW4iLCAidGVtcGxhdGUiOiAiQ3VzdG9tL2FpaWRhIiwgInZhcmlhYmxlcyI6IHsiZGVzY3JpcHRpb24iOiAiRXhwbG9yaW5nIEFpaURBIGFyY2hpdmUgZmlsZSBgZXhwb3J0X0FsX0F1LmFpaWRhYCBvZiByZWNvcmQgW2RvaTp7J2NsaWVudCc6ICdkYXRhY2l0ZScsICdwcm92aWRlcic6ICdkYXRhY2l0ZScsICdpZGVudGlmaWVyJzogJzEwLjI0NDM1L21hdGVyaWFsc2Nsb3VkOjIwLTl6J31dKGh0dHBzOi8vZG9pLm9yZy97J2NsaWVudCc6ICdkYXRhY2l0ZScsICdwcm92aWRlcic6ICdkYXRhY2l0ZScsICdpZGVudGlmaWVyJzogJzEwLjI0NDM1L21hdGVyaWFsc2Nsb3VkOjIwLTl6J30pIiwgImFyY2hpdmVfdXJsIjogImh0dHBzOi8vMTI3LjAuMC4xL2FwaS9yZWNvcmRzL2NrNG04LXB3ZzcyL2ZpbGVzL2V4cG9ydF9BbF9BdS5haWlkYS9jb250ZW50P3JlY29yZF9pZD1jazRtOC1wd2c3MiZmaWxlX2lkPTRhMGMwYjg2LWQzZjQtNDA1Yy04NzRkLTYwZTQxNGUzNDE5ZSZmaWxlbmFtZT1leHBvcnRfQWxfQXUuYWlpZGEifX0=
Related Identifier https://archive.materialscloud.org/communities/mcarchive
Related Identifier https://doi.org/10.24435/materialscloud:kx-rw
Metadata Access https://archive.materialscloud.org/oai2d?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:1811
Provenance
Creator Rüßmann, Philipp; Bahari, Masoud; Blügel, Stefan; Trauzettel, Björn
Publisher Materials Cloud
Contributor Rüßmann, Philipp
Publication Year 2023
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type info:eu-repo/semantics/other
Format application/octet-stream; text/markdown
Discipline Materials Science and Engineering