Multi-Component PtFeCoNi Core-Shell Nanoparticles on MWCNTs as Promising Bifunctional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions

DOI

The development of commercially viable fuel cells and metal air batteries requires effective and cheap bifunctional catalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Multi-component Pt-Fe-Co-Ni nanoparticles on multi-walled carbon nanotubes (MWCNTs) were synthesized by wet chemistry route via NaBH4 reduction of metal salts, followed by sintering at different temperatures. The catalyst demonstrates an excellent ORR activity and a promising OER activity in 0.1 m KOH, with a bi-functional overpotential, ΔE of 0.83 V, which is comparable to the values of Pt/C or RuO2. Furthermore, it shows outstanding long-term stability in ORR and OER, namely diffusion limited current density at a potential of 0.3 V decreased just by 5.5% after 10000 cycles in ORR. The results of the PFCN@NT300 indicate a significant effect of the substitution of Pt by the transition metal (TM) and the formation of nanoparticles on the catalytic performance, especially in the OER.

TEM data in Velox and Digital Micrograph format, XPS data in CASA format, TGA as text file, XRD as text file with angle and intensity.

Identifier
DOI https://doi.org/10.35097/1576
Metadata Access https://www.radar-service.eu/oai/OAIHandler?verb=GetRecord&metadataPrefix=datacite&identifier=10.35097/1576
Provenance
Creator Braun, Tobias; Dinda, Sirshendu; Karkera, Guruprakash; Melinte, Georgian; Diemant, Thomas; Kübel, Christian K. U. ORCID logo; Fichtner, Maximilian; Pammer, Frank
Publisher Karlsruhe Institute of Technology
Contributor RADAR
Publication Year 2023
Rights Open Access; Creative Commons Attribution Non Commercial Share Alike 4.0 International; info:eu-repo/semantics/openAccess; https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
OpenAccess true
Representation
Resource Type Dataset
Format application/x-tar
Discipline Construction Engineering and Architecture; Engineering; Engineering Sciences