Replication Data for: causalizeR: A text mining algorithm to identify causal relationships in scientific literature

DOI

Complex interactions among multiple abiotic and biotic drivers result in rapid changes in ecosystems worldwide. Predicting how specific interactions can cause ripple effects potentially resulting in abrupt shifts in ecosystems is of high relevance to policymakers, but difficult to quantify using data from singular cases. We present causalizeR (https://github.com/fjmurguzur/causalizeR), a text-processing algorithm that extracts causal relations from literature based on simple grammatical rules that can be used to synthesize evidence in unstructured texts in a structured manner. The algorithm extracts causal links using the relative position of nouns relative to the keyword of choice to extract the cause and effects of interest. The resulting database can be combined with network analysis tools to estimate the direct and indirect effects of multiple drivers at the network level, which is useful for synthesizing available knowledge and for hypothesis creation and testing. We illustrate the use of the algorithm by detecting causal relationships in scientific literature relating to the tundra ecosystem.

R, 4.1.0

Identifier
DOI https://doi.org/10.18710/PTQ8X7
Metadata Access https://dataverse.no/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.18710/PTQ8X7
Provenance
Creator Ancin-Murguzur, Francisco Javier ORCID logo; Hausner, Vera Helene ORCID logo
Publisher DataverseNO
Contributor Ancin-Murguzur, Francisco Javier; UiT The Arctic University of Norway
Publication Year 2021
Funding Reference The FRAM Centre 369903 ; The Research Council of Norway 296987
Rights CC0 1.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/publicdomain/zero/1.0
OpenAccess true
Contact Ancin-Murguzur, Francisco Javier (UiT The Arctic University of Norway)
Representation
Resource Type Algorithm in R language to perform bibliographic analyses; Dataset
Format text/plain; application/zip; type/x-r-syntax
Size 3336; 37175; 8719839; 4514
Version 1.1
Discipline Earth and Environmental Science; Environmental Research; Geosciences; Natural Sciences