Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention, yet their origin remains a topic of debate. The discovery of ScV₆Sn₆, a bilayer kagome metal featuring an intriguing √3 x √3 x 3 CDW order, offers a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering and density functional theory to investigate the electronic structure and phonon modes of ScV₆Sn₆. We identify topologically nontrivial surface states and multiple van Hove singularities (VHSs) in the vicinity of the Fermi level, with one VHS aligning with the in-plane component of the CDW vector near the K ̅ point. Additionally, Raman measurements indicate a strong electron-phonon coupling, as evidenced by a two-phonon mode and new emergent modes. Our findings highlight the fundamental role of lattice degrees of freedom in promoting the CDW in ScV₆Sn₆.