This dataset comprises numerical outputs from the whole atmospheric model GAIA (=Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy) and associated simulations (EXP1, EXP2, and EXP3) presented in the article "Excitation mechanism of ionospheric 6-day oscillation during the 2019 September sudden stratospheric warming event" (Miyoshi and Yamazaki, 2020).
Briefly, GAIA is a numerical model of the Earth’s whole atmosphere (e.g., Jin et al., 2011; Miyoshi et al., 2011, 2012). The model consists of mathematical equations that represent various physical and chemical processes in the troposphere, stratosphere, mesosphere, and thermosphere. The neutral atmosphere model (Miyoshi & Fujiwara, 2003) is coupled with an ionospheric model (Shinagawa, 2011) and electrodynamics model (Jin et al., 2008). The lower layers of the model below 40 km are constrained by meteorological reanalysis products by the Japan Meteorological Agency (Kobayashi, et al., 2015).
The model was run for the period 1 September-10 October 2019, when there was a sudden stratospheric warming in the Antarctic region (Yamazaki et al., 2020). The GAIA simulation outputs can be found in the directory 'gaia', while the numerical outputs from the controlled simulations EXP1, EXP2, and EXP3 can be found in the directories 'exp1', 'exp2', and 'exp3', respectively. The model data for the temperature, zonal wind, meridional wind, and geopotential heigh are stored separately for each day in the NetCDF format. 'gt', 'gu', 'gv', and 'gz' in file name indicate the temperature, zonal wind, meridional wind, and geopotential heigh, respectively. For instance, the file 'gv20190915gcm.nc' contains the meridional wind data for 15 September 2019. The model data for the eastward current intensity, eastward electric field, and total electron content can be found as text files, namely, 'East_current_gaia.data', 'East_efield_gaia.data', and 'tec_gaia.data'.