Enhanced spin Hall ratio in two-dimensional semiconductors

The conversion efficiency from charge current to spin current via spin Hall effect is evaluated by the spin Hall ratio (SHR). Through state-of-the-art ab initio calculations involving both charge conductivity and spin Hall conductivity, we report the SHRs of the III-V monolayer family, revealing an ultrahigh ratio of 0.58 in the hole-doped GaAs monolayer. In order to find more promising 2D materials, a descriptor for high SHR is proposed and applied to a high-throughput database, which provides the fully-relativistic band structures and Wannier Hamiltonians of 216 exfoliable monolayer semiconductors and has been released to the community. Among potential candidates for high SHR, the MXene monolayer Sc₂CCl₂ is identified with the proposed descriptor and confirmed by computation, demonstrating the descriptor validity for high SHR materials discovery.

Identifier
Source https://archive.materialscloud.org/record/2024.134
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2138
Provenance
Creator Zhou, Jiaqi; Poncé, Samuel; Charlier, Jean-Christophe
Publisher Materials Cloud
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution Non Commercial Share Alike 4.0 International https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering