This dataset contains the data and code for the publication: Voronoi Cell Interface-Based Parameter Sensitivity Analysis for Labeled Samples.
Code Repository
A dynamic version of the code repository can be found at https://github.com/rbnbr/VoroParaSense.
The version presented in this dataset corresponds to the version used in the corresponding paper (referenced as v1.0.0) and does not contain post-publication changes to the repository.
Figures
Some of the figures contained in the Jupyter Notebooks were used to generate the CC BY 4.0 licensed figures in https://doi.org/10.1111/cgf.70122. The figures here are the raw .png figures. The published figures are mostly vector graphics and were slightly modified compared to the figures rendered in the Jupyter notebooks.
Author: Ruben Bauer
Source: https://doi.org/10.1111/cgf.70122
License: CC BY 4.0
The figures of the main paper are:
examples\notebooks\plot_examples\two_d_clipping_and_distribution.ipynb used to generate Figure 2
examples\notebooks\plot_examples\three_dimensional_case.ipynb used to generate Figure 3
examples\notebooks\plot_examples\two_d_clipping_and_distribution.ipynb used to generate Figure 4
examples\notebooks\plot_examples\two_d_major_transition_directions.ipynb used to generate Figure 5
examples\notebooks\single_dataset_convenience_plots\iris_conv_plot.ipynb used to generate Figure 6, 7, 8, 9, 10, 12
examples\notebooks\plot_examples\space_dividing_line.ipynb used to generate Figure 11
examples\notebooks\single_dataset_convenience_plots\semiconductor_conv_plot.ipynb used to generate Figure 14
examples\notebooks\single_dataset_convenience_plots\droplet_impact_conv_plot.ipynb used to generate Figure 15, 16
For the supplemental material:
examples\notebooks\plot_examples\normal_vectors_angle_vis.ipynb used to generate Figure 1
examples\notebooks\plot_examples\plane_plane_distance.ipynb used to generate Figure 2
examples\notebooks\plot_examples\runtime_experiments_2.ipynb used to generate Figure 3, 4
examples\notebooks\plot_examples\bandwidth_experiments.ipynb used to generate Figure 5 - 15
Install
Tested with Python 3.12.3.
Setup virtual environment with Python: python -m venv .venv
Activate the environment, then install the requirements via: pip install -r requirements.txt
Run python ./main.py to run the main example.
Use persistent identifiers from Software Heritage (
) to cite individual files or even lines of the source code.