Cobalt-containing calcium phosphate induces resorption of biomineralized collagen by human osteoclasts

DOI

Biomineralized collagen, consisting of fibrillary type-I collagen with embedded hydroxyapatite mineral, is a bone-mimicking material with potential application as a bone graft substitute. Despite the chemical and structural similarity with bone extracellular matrix, no evidence exists so far that biomineralized collagen can be resorbed by osteoclasts. The aim of the current study was to induce resorption of biomineralized collagen by osteoclasts by a two-fold modification: increasing the calcium phosphate content and introducing cobalt ions (Co2+), which have been previous shown to stimulate resorptive activity of osteoclasts. To this end, we produced biomineralized collagen membranes and coated them with a cobalt-containing calcium phosphate (CoCaP), which increased the mineral content of the membranes by 4 wt.% and their elastic modulus from 1 to 10 MPa. The coated membranes showed a sustained Co2+ release of about 7 nM per 2 days. In contrast to uncoated membranes, on CoCaP-coated biomineralized collagen membranes, human osteoclasts, derived from CD14+ monocytes from peripheral blood, sporadically formed actin rings, causing resorption lacunae to form, as observed by SEM and confirmed by increase in Ca2+ concentration in cell culture medium. The effect of the CoCaP layer on osteoclast function is thought to be mainly caused by the increase of membrane stiffness, although the effect of Co2+, which was released in very low amounts, cannot be fully excluded. Despite the fact that the extent of osteoclast resorption was limited and the method needs further optimization, this work shows the potential of this relatively simple approach to induce osteoclast resorption of biomineralized collagen. Moreover, the coating method is suitable for incorporating bioactive ions of interest into biomineralized collagen, which is typically not possible using the common biomineralization methods, such as polymer-induced liquid precursor method.

Identifier
DOI https://doi.org/10.34894/JUS4U6
Metadata Access https://dataverse.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.34894/JUS4U6
Provenance
Creator de Melo Pereira, Daniel ORCID logo; Schumacher, Matthias ORCID logo; Habibovic, Pamela ORCID logo
Publisher DataverseNL
Contributor de Melo Pereira, Daniel; Habibovic, Pamela; Hebels, Dennie
Publication Year 2021
Rights CC0 Waiver; info:eu-repo/semantics/openAccess; https://creativecommons.org/publicdomain/zero/1.0/
OpenAccess true
Contact de Melo Pereira, Daniel (Maastricht University); Habibovic, Pamela (Maastricht University); Hebels, Dennie (Maastricht University)
Representation
Resource Type Dataset
Format application/vnd.openxmlformats-officedocument.spreadsheetml.sheet; image/tiff; application/x-rar-compressed
Size 10833; 13598797; 13598790; 53845928; 53845923; 639264; 564562; 16626042; 12979905; 9332084; 55734352; 10433520; 2731750; 198961818; 97216663
Version 1.0
Discipline Life Sciences; Medicine