Learning, forecasting and structural breaks (replication data)

DOI

We provide a general methodology for forecasting in the presence of structural breaks induced by unpredictable changes to model parameters. Bayesian methods of learning and model comparison are used to derive a predictive density that takes into account the possibility that a break will occur before the next observation. Estimates for the posterior distribution of the most recent break are generated as a by-product of our procedure. We discuss the importance of using priors that accurately reflect the econometrician's opinions as to what constitutes a plausible forecast. Several applications to macroeconomic time-series data demonstrate the usefulness of our procedure.

Identifier
DOI https://doi.org/10.15456/jae.2022319.0720621360
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:775963
Provenance
Creator Maheu, John M.; Gordon, Stephen
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2008
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics