Phase-coded oscillatory ordering promotes the separation of closely matched representations to optimize perceptual discrimination

DOI

It has been proposed that low-frequency oscillations are involved in separating neuronal representations belonging to different stimulus items. Indeed, item-specific neuronal activity was found to cluster on different oscillatory phases. However, the consequences of this neural mechanism for perception are unknown. Here, we investigated whether and how neuronal item separation through oscillatory clustering influences perceptual item separation. In an EEG experiment, participants categorized sounds parametrically varying in pitch, relative to an arbitrary pitch boundary. We found that pre-stimulus oscillatory phase, in the theta and alpha ranges, biased near-boundary sound categorization responses to one category or the other. Phase also modulated whether evoked neuronal responses more closely resembled the sound envelope of one or another category. Intriguingly, participants with stronger oscillatory clustering (phase strongly biasing sound categorization) in the theta, but not alpha range, had steeper perceptual psychometric slopes (sharper discrimination between sound categories). These results indicate that neuronal sorting of information by phase directly influences subsequent perception, and has a positive impact on discrimination performance.

Identifier
DOI https://doi.org/10.34894/6KR8LY
Metadata Access https://dataverse.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.34894/6KR8LY
Provenance
Creator ten Oever, Sanne ORCID logo; Meierdierks, Tobias ORCID logo; Duecker, Felix ORCID logo; De Graaf, Tom A. ORCID logo; Sack, Alexander ORCID logo
Publisher DataverseNL
Contributor Ten Oever, Sanne; faculty data manager FPN
Publication Year 2020
Rights CC0 Waiver; info:eu-repo/semantics/openAccess; https://creativecommons.org/publicdomain/zero/1.0/
OpenAccess true
Contact Ten Oever, Sanne (Maastricht University); faculty data manager FPN (Maastricht University)
Representation
Resource Type Dataset
Format application/octet-stream; text/plain
Size 328998400; 5155; 8120; 10802; 265996800; 23387; 7982; 9874; 150265600; 1889; 2952; 127980800; 7739; 7981; 5328; 337804800; 15165; 12441; 300627200; 1449; 11403; 15124; 253900800; 8052; 12360; 9422; 86790400; 4004; 2893; 223571200; 5000; 8503; 221011200; 9955; 8676; 7771; 361619200; 14227; 11720; 313107200; 9459; 11612; 7347; 636716800; 32503; 8870; 22657; 424499200; 17177; 145920000; 5887; 32207; 641107200; 11965; 22976; 20928; 154579200; 5932; 337459200; 11651; 32630; 194835200; 5268; 6260; 368684800; 10782; 11745; 152281600; 17432; 5933; 177388800; 5877; 170508800; 5994; 329171200; 11438; 32763; 7792; 197401600; 7983; 5902; 336896000; 11511; 153542400; 22899; 8116; 286700800; 11497; 138214400; 5889; 138560000; 5852; 32288; 150246400; 11756; 5835; 471366400; 10123; 17254; 11275; 352403200; 7979; 11430; 175308800; 5878; 158028800; 5837; 30600; 646201600; 8118; 22541; 30699; 28290; 367398400; 11457; 346444800; 11445; 30605; 13660; 197497600; 2737; 6456; 298579200; 15231; 11493; 158822400; 5962; 387731200; 14496; 10803; 536857600; 15433; 11686; 71238400; 2472; 490688000; 17117; 172544000; 5865; 30543; 658790400; 22702; 30365; 548601600; 23942; 19222; 153721600; 2045; 5483; 7260
Version 1.0
Discipline Agriculture, Forestry, Horticulture, Aquaculture; Agriculture, Forestry, Horticulture, Aquaculture and Veterinary Medicine; Life Sciences; Social Sciences; Social and Behavioural Sciences; Soil Sciences