Replication Data for: Micrometer-scale sediment grain-size prediction using X-Ray Fluorescence geochemistry and Computed Tomography density scanning data

DOI

This dataset contains the data generated for the study "Micrometer-scale sediment grain-size prediction using X-Ray Fluorescence geochemistry and Computed Tomography density scanning data" by Auer et al. 2025. The study presents a method that allows micrometer-scale prediction of mean grain size. The authors integrate grain size-sensitive Computed Tomography (CT) density data into a linear regression-based modelling approach that relies on X-ray fluorescence (XRF) geochemistry. Via experiments on synthetic cores and real-world applications on sediment cores with published grain-size profiles, the study demonstrates that CT scans improve the predictability of grain size, especially in sediments with a homogenous geochemistry, where CT data can be used as a sole predictor.

R studio, 2024.12.1

GRASP, 1.0.0

Identifier
DOI https://doi.org/10.18710/8I9G81
Metadata Access https://dataverse.no/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.18710/8I9G81
Provenance
Creator Auer, Andreea Gabriela ORCID logo; van der Bilt, Willem G. M. (ORCID: 0000-0003-3157-451X); Bertrand, Sebastien ORCID logo; Hasal, Katarzyna
Publisher DataverseNO
Contributor Auer, Andreea Gabriela; University of Bergen; van der Bilt, Willem Godert Maria; Bertrand, Sebastien; Hasal, Katarzyna
Publication Year 2025
Funding Reference Trond Mohn Foundation TMS2021STG01
Rights CC0 1.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/publicdomain/zero/1.0
OpenAccess true
Contact Auer, Andreea Gabriela (University of Bergen, Department of Earth Science and Bjerknes Centre for Climate Research)
Representation
Resource Type grain size measurements; Dataset
Format text/plain
Size 14788; 3262; 4679; 4943; 2971; 4691; 4708; 4615; 16206; 16147; 134017
Version 1.0
Discipline Earth and Environmental Science; Environmental Research; Geosciences; Natural Sciences