Light-microscopy based connectomic reconstruction of mammalian brain tissue

DOI

The information-processing capability of the brain’s cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale resolution with dense cellular labelling. Light microscopy is uniquely positioned to visualize specific molecules but dense, synapse-level circuit reconstruction by light microscopy has been out of reach due to limitations in resolution, contrast, and volumetric imaging capability. Here we developed light-microscopy based connectomics (LICONN). We integrated specifically engineered hydrogel embedding and expansion with comprehensive deep-learning based segmentation and analysis of connectivity, thus directly incorporating molecular information in synapse-level brain tissue reconstructions. LICONN will allow synapse-level brain tissue phenotyping in biological experiments in a readily adoptable manner.

Identifier
DOI https://doi.org/10.15479/AT:ISTA:18697
Metadata Access https://research-explorer.app.ist.ac.at/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:pub.research-explorer.ista.ac.at:18697
Provenance
Creator Danzl, Johann G; Lyudchik, Julia; Kreuzinger, Caroline
Publisher Institute of Science and Technology Austria
Publication Year 2025
Rights https://creativecommons.org/licenses/by-nc-sa/4.0/; info:eu-repo/semantics/openAccess
OpenAccess true
Contact repository.manager(at)ist.ac.at
Representation
Resource Type info:eu-repo/semantics/other; doc-type:ResearchData; Text; http://purl.org/coar/resource_type/c_ddb1
Discipline Life Sciences, Natural Sciences, Engineering Sciences