In the southern Central Andes (~32°S), subduction of the Nazca oceanic plate beneath the South American continental plate becomes horizontal. The growth of the Altiplano-Puna Plateau is covalently related to the southward migration of the flat subduction, but the role of subduction geometry and the plate strength on current and long-term deformation of the Andes remains poorly explored. This study takes a data-driven approach of integrating the previous structural and thermal model of the lithosphere of the southern central Andes into a 3D geodynamic model to explore the different parameters contributing to the localization of deformation. We simulate visco-plastic deformation using the geodynamic code ASPECT. The repository includes parameter files and input files for the reference model (S1) and the following alternative simulations: a series of models with variation in friction at the subduction interface (S2a-d), a series of models with variation in sedimentary strength (S3a-d), a series that studies the effect of topography (S4), and a series that studies the effect of plate velocities. In addition, a readme file gives all the instructions to run them.
We have built a series of 3D data-driven geodynamic model using the finite element code ASPECT (Advanced Solver for Problems in Earth's ConvecTion, version 2.3.0-pre, Kronbichler et al., 2012; Heister et al., 2017; Rose et al., 2017; Bangerth et al., 2021) to simulate brittle and ductile deformation. We have incorporated present-day compositional thicknesses, densities, and temperature fields based on lithospheric-scale models of Rodriguez Piceda et al (2020, 2021a, 2021b, 2022) and ran the simulation for 250,000 years, prescribing plate velocities of 5 cm/yr to the oceanic plate and 1 cm/yr to the continental plate (Sdrolias et al., 2006; Becker et al., 2015), with open borders on the left and right of the asthenosphere.