Datasets and models for monitoring ultra-short pulse laser texturing using spectro-temporal data

DOI

This repository contains spectrometric data acquired during laser femtosecond texturing campaigns on 316L steel samples. Deep learning models have been trained on this data to enable the estimation of hue or in situ texturing conditions. This repository therefore contains four datasets, two models, and the code needed to load the datasets and models and reproduce our results.

Python, 3.10.0

Tensorflow, 2.9.0

Identifier
DOI https://doi.org/10.57745/D2NV6Z
Metadata Access https://entrepot.recherche.data.gouv.fr/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.57745/D2NV6Z
Provenance
Creator Mosser, Loic ORCID logo; Renaud, Pierre ORCID logo; Lecler, Sylvain ORCID logo; Barbé, Laurent ORCID logo; Geiskopf, François ORCID logo; Mermet, Frédéric; Romano, Jean-Michel
Publisher Recherche Data Gouv
Contributor Lecler, Sylvain; Jesse Schiffler; Baptiste De Azevedo; Laboratoire ICube; IREPA Laser; Institut National des Sciences Appliquées de Strasbourg; Entrepôt Recherche Data Gouv
Publication Year 2025
Funding Reference Agence nationale de la recherche ANR-22-LCV2-0006 ; Agence nationale de la recherche ANR-10-EQPX-44-01 ; Agence nationale de la recherche ANR-21-ESRE-0015
Rights etalab 2.0; info:eu-repo/semantics/openAccess; https://spdx.org/licenses/etalab-2.0.html
OpenAccess true
Contact Lecler, Sylvain (ICube UMR7357 ; Université de Strasbourg, INSA Strasbourg, CNRS ; France)
Representation
Resource Type Dataset
Format application/zip; text/x-python; text/markdown
Size 2132092935; 14423; 14485; 177363520; 11335
Version 1.0
Discipline Computer Science; Engineering Sciences; Physics; Construction Engineering and Architecture; Engineering; Natural Sciences
Spatial Coverage Pôle API, Illkirch-Graffenstaden