Dataset: output related to the paper 'Event detection in Twitter: A machine-learning approach based on term pivoting'

DOI

This dataset features the output of intermediate steps and the final output of the research that is described in the paper: F. Kunneman and A. Van den Bosch (2014), Event detection in Twitter: A machine-learning approach based on term pivoting, In: F. Grootjen, M. Otworowska, and J. Kwisthout (Eds.), Proceedings of the 26th Benelux Conference on Artificial Intelligence, pp. 65-72,http://hdl.handle.net/2066/132203The paper describes an approach to extracting events (of all types) from Twitter by identifying words that are suddenly mentioned frequently in tweets, clustering similar terms together and training a model to distinguish significant from insignificant event clusters. The current dataset features the word counts that are used to find words with a sudden high frequency, the clusters of such words, and the classification decisions for event significance.  Tweets relate to the following period: June 22nd 2013 - August 22nd 2013.

Identifier
DOI https://doi.org/10.17026/dans-zk4-aq5x
Metadata Access https://phys-techsciences.datastations.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.17026/dans-zk4-aq5x
Provenance
Creator F.A. Kunneman; A.P.J. van den Bosch
Publisher DANS Data Station Phys-Tech Sciences
Contributor RU Radboud University
Publication Year 2017
Rights CC BY 4.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/licenses/by/4.0
OpenAccess true
Contact RU Radboud University
Representation
Resource Type Dataset
Format text/plain; application/zip; application/pdf
Size 93129; 78701; 99743; 111544; 109209; 114848; 105487; 69289; 64215; 88637; 85182; 88327; 63094; 60948; 74598; 82494; 85260; 87764; 78698; 94943; 58876; 59435; 78201; 87334; 74979; 67889; 76344; 67971; 58367; 76443; 96579; 85727; 78733; 103721; 94994; 86668; 73427; 72589; 76273; 85707; 67165; 65541; 77769; 84787; 88533; 84163; 85183; 71607; 75099; 89498; 79991; 98389; 92761; 98337; 77755; 62320; 56643; 82048; 82819; 86629; 86355; 81899; 43427; 50695; 230259112; 38502
Version 2.0
Discipline Other